NSGA-PINN: A Multi-Objective Optimization Method for Physics-Informed Neural Network Training

نویسندگان

چکیده

This paper presents NSGA-PINN, a multi-objective optimization framework for the effective training of physics-informed neural networks (PINNs). The proposed uses non-dominated sorting genetic algorithm (NSGA-II) to enable traditional stochastic gradient algorithms (e.g., ADAM) escape local minima effectively. Additionally, NSGA-II enables satisfying initial and boundary conditions encoded into loss function during precisely. We demonstrate effectiveness our by applying NSGA-PINN several ordinary partial differential equation problems. In particular, we show that can handle challenging inverse problems with noisy data.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

solution of security constrained unit commitment problem by a new multi-objective optimization method

چکیده-پخش بار بهینه به عنوان یکی از ابزار زیر بنایی برای تحلیل سیستم های قدرت پیچیده ،برای مدت طولانی مورد بررسی قرار گرفته است.پخش بار بهینه توابع هدف یک سیستم قدرت از جمله تابع هزینه سوخت ،آلودگی ،تلفات را بهینه می کند،و هم زمان قیود سیستم قدرت را نیز برآورده می کند.در کلی ترین حالتopf یک مساله بهینه سازی غیر خطی ،غیر محدب،مقیاس بزرگ،و ایستا می باشد که می تواند شامل متغیرهای کنترلی پیوسته و گ...

A Multi-Objective Method for Network Reconfiguration (TECHNICAL NOTE)

This paper presents an algorithm based on multi-objective approach for network reconfiguration. Multiple objectives are considered for reduction in the system power loss, deviations of the nodes voltage and transformers loading imbalance, while subject to a radial network structure in which all the loads must be energized and no branch current constraint is violated. These three objectives are ...

متن کامل

A variant of NSGA for solving Multi objective optimization problems

Predicting the yield of various aromatic plants with the help

متن کامل

A conjugate gradient based method for Decision Neural Network training

Decision Neural Network is a new approach for solving multi-objective decision-making problems based on artificial neural networks. Using inaccurate evaluation data, network training has improved and the number of educational data sets has decreased. The available training method is based on the gradient decent method (BP). One of its limitations is related to its convergence speed. Therefore,...

متن کامل

A mathematical multi-objective model for treatment network design (physical-biological-thermal) using modified NSGA II

Today, sustainable development is one of the important issues in regard to the economy of a country. This issue magnifies the necessity for increased scrutiny towards issues such as environmental considerations and product recovery in closed-loop supply chains (CLSCs). The most important motivational factors influencing research on these topics can be considered in two general groups: environme...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Algorithms

سال: 2023

ISSN: ['1999-4893']

DOI: https://doi.org/10.3390/a16040194